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Abstract–Obstructive Sleep Apnea (OSA) is a disease
in which airways involuntarily collapse during sleep, lead-
ing to serious consequences. About 10% of snorers suffer
from OSA, unknown to them, nevertheless requiring med-
ical attention. The current standard of diagnosis for OSA,
polysomnography (PSG), requires that the patients spend
one full day in a hospital, wired to a multitude of instru-
ments. PSG is complicated, expensive, and unsuitable for
mass screening of the population. OSA is commonly ac-
companied by snoring. Even though snoring carries vital
information on the state of the airways, it has rarely been
used in diagnosing OSA. In this paper, we present a math-
ematical model for snoring, and illustrate its usefulness in
diagnosing OSA. We exploit similarities and differences
between speech and snoring signals to separate the two,
and, provide new features to diagnose OSA at low cost.
Via experiments carried out in a hospital sleep-laboratory,
we illustrate the importance of using noise reduction tech-
niques to acquire snoring data with sufficient integrity.
Keywords- Snoring, Apnea, Pitch Analysis, vocal tract.

I. INTRODUCTION

An OSA attack is characterized by repeated episodes
of upper airway closure during sleep, and, is defined as
the total cessation of respiratory airflow that lasts at least
10s. OSA events are typically terminated by a premature
arousal from sleep, with the most presenting symptom
being loud and interrupted snoring.
Even though OSA appears benign at a first glance, it

leads to a large number of untimely deaths. Among the
known problems associated with OSA are hypertension,
ischemic heart disease and stroke. In addition, OSA is
responsible for industrial accidents, driving fatalities and
lost production due to daytime sleepiness of operators.
The current standard of diagnosis, PSG, requires that

the patients sleeps for a day in a hospital, under video
surveillance and wired to a multitude of instruments. In
a typical PSG session, signals/parameters such as ECG,
EEG, EMG, EOG, nasal/oral airflow, respiratory effort,
neck vibrations, body positions, body movements and
the blood Oxygen saturation of the patient are carefully
monitored. The interpretation of the PSG of a patient
too is a complex process, demanding the attention of a
trained expert. The limited PSG facilities around the
world has resulted in long waiting lists, making it an
impossible task to test all the patients in need of such
assessment.
There had been a few attempts at using snoring sounds

to diagnose OSA [1], [2], [3]. The features commonly
used to characterize snoring sounds were the sound inten-

sity or the peak frequency of the snore spectrum. OSA is
primarily caused by structural abnormalities in the up-
per airway during sleep, and the features used did not,
unfortunately, directly correspond to OSA. Furthermore,
in all of [1], [2], [3], raw snoring data were used without
any processing to reduce noise captured together with
the data. Even in the controlled setting of the hospital’s
sleep clinic, the recorded snoring sounds are usually cor-
rupted with background noise, leading to inconsistencies
in analysis. One of the serious problems hindering snore
analysis is the unavailability of methods to automatically
separate genuine snoring sounds from other biological
sounds such as somniloquous speech.
This paper addresses those concerns and make the fol-

lowing contributions:
• We show the importance of acquiring snoring signals
at a sufficient Signal-to-Noise ratio (SNR), if reasonable
results are to be expected. We present methods to en-
hance the SNR of recordings.
• We propose a mathematical model for snoring, and il-
lustrate its usefulness in separating genuine snoring from
other biological sounds such as somniloquous speech.
• We show that the proposed mathematical method al-
lows us to devise novel signatures to diagnose OSA ef-
fectively.

II. A model for the snoring

We model the discretized sound y[n] recorded simul-
taneously with a PSG session as,

y[n] = ss[n] + sp[n] + b[n], (1)

= s[n] + b[n] (2)

where ss[n] is the clean snoring sound, sp[n] is the som-
niloquous speech of the patient, or speech from exter-
nal sources, and, b[n] is the background electrical and
acoustical noise. The quantity s[n] = ss[n] + sp[n] now
combines clean snoring and somniloquous speech.
The component sp[n] can be described using the

source-vocal tract model in speech synthesis [4], i.e.,

sp[n] = hp[n] ∗ gp[n], (3)

where hp[n] represents the transmission characteristics
of the vocal tract, and gp[n] is the source excitation ini-
tiating the speech sound. The symbol “*” stands for the
linear convolution operator. For voiced sounds such as
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Fig. 1. Speech vs snoring: similarities and differences.

vowels, the excitation can be represented by a sequence
of impulses given by,

gp[n] = K

∞X
−∞

δ[n− kTp], (4)

where Tp denotes the pitch associated with the particular
sound, K is a scaling constant and δ[·] is the discrete
delta function. In the case of unvoiced sounds, gp[n] is
a random noise process. The source-vocal tract model
is well developed and is used widely in speech synthesis
systems.
In this paper, we draw on the similarities of the speech

and snore production mechanism to model the genuine
snore component, i.e., ss[n] in (1). Both snoring and
speech sounds share some common ”hardware” in the
in the process of generation; both are modulated by the
vocal tract, or, the acoustical properties of the upper
airways.
Some similarities as well as differences between snor-

ing and speech are shown in Fig.1. In Fig. 1 (a), a snor-
ing sample recorded from an OSA patient is illustrated.
Fig. 1(b) and 1(c) shows parts of the trace in Fig. 1(a)
zoomed into two different scales, for easy visualization of
details. Similar plots for a speech signal (corresponding
to the sound “ae” in the utterance “one”) are shown in
Figs. 1(d),(e) and (f). The pseudo-periodic nature of the
snoring signal is clearly evident in Fig. 1. This is similar
to the case of voiced-sounds in human speech, as seen in
Fig. 1(d) (e) and (f).
The “source-excitation” for snoring can be considered

to be pseudo-periodic in nature, having, possibly, its ori-
gins in the vibrations of the structures of the upper air-

ways. Drawing from the speech model, we describe ss[n]
as,

ss[n] = hs[n] ∗ gs[n], (5)

where gs is a source excitation sequence and hs is termed
the Total Airway Response (TAR). The TAR is a slowly
time varying function, which captures the time-varying
acoustical features of the airways. The quantity gs[n] is
a pseudo-periodic sequence given by,

gs[n] = U [n]

∞X
k=−∞

δ[n− kTs + ²], (6)

where ² is zero-mean random variable satisfying
Probab(|²| > T ) = 0, and, U [n] captures the slowly
varying magnitudes of the excitation sequence; Ts is the
(pseudo) periodicity associated with snoring, which is a
measure of the “pitch” of snoring.
In this paper, we investigate the nature of the “pitch”

of speech and snoring. Working on clinical data, we illus-
trate that via Eqs.(3)-(6), we can separate genuine snor-
ing from somniloquous speech, and, more importantly,
diagnose OSA consistently.

III. Data acquisition, Annotation &
enhancement

A. Data acquisition

The environment of a Sleep Laboratory is highly con-
trolled in order to provide the best ambience for the pa-
tient to sleep. However, even in that environment, the
component b[n] can drive the SNR of the recording to an
unacceptably low value. One of the major reasons is that
the component ss[n] has a dynamic range> 90dB. Softer
snoring can easily get buried in the background noise
b[n]. In the work of this paper, SNR enhancement was
attempted though careful hardware design, and through
software based noise reduction algorithms.
We developed a high fidelity snore acquisition sys-

tem for the sleep laboratory. Two microphones are
used for recordings, one placed about 50cm above the
head of the patient, while the other placed near the air-
conditioner (see Fig.2). The microphones (40-18000 Hz,
Dynamic range 118 dB, Model BG4.1, Shures Broth-
ers Incorporated, Evanston, Illinois) are connected to a
signal-conditioning unit (INA103, Burr-Brown Corpora-
tion, Tucson, Arizona), output of which is connected to
the data acquisition (DAQ) card (NI4552, National In-
struments, Austin, Texas) through a shielded coaxial ca-
ble of 12m. The sounds are digitized at a rate of 44.1
kSamples/s, with a 16-bit resolution.
In order to achieve a high SNR, we chose low-noise

components in the design. Also, we used a shielded and
grounded co-axial cable to carry the signal from the ex-
amination room to the DAQ in the monitoring station.
Shielding proved to be an essential strategy, in counter-
ing the electromagnetic interference (EMI) in the envi-
ronment.



Fig. 2. Snore data acquisition simultaneously with routine PSG
assessment.

B. Data Annotation

Based on routine PSG assessments, snoring sounds
were annotated as either Benign-Snoring (BS) or OSA-
snoring (AS), with the help of clinical specialists. We
studied 14 subjects undergoing PSG assessment at the
sleep clinic, of which 7 each were diagnosed as belonging
to classes AS and BS. About 10 episodes of snoring were
randomly selected from each of the subjects for analysis.
In patients with OSA, snoring corresponded to the 1st,
2nd and 3rd breath after an episode of OSA attack.

C. Noise reduction

We used the spectral subtraction (SS) method [5] to
reduce the background noise component b[n]. The SS
method was chosen for its simplicity, and the proven
ability to deliver high SNR ratios in speech processing
applications in noisy environments.
The primary microphone, i.e. the microphone placed

just above the patient’s head, will capture the signal y[n].
We placed another microphone closer to the air condi-
tioning vent to function as a reference microphone, which
predominantly captures the soft purring sounds from the
air conditioner [6]. The reference microphone output
is a reasonable representation of the component b[n],
which represents both electrical and acoustical back-
ground noise.
Taking the Fourier Transform of (2), we get, Y (f) =

S(f) + B(f), where Y (f), S(f) and B(f) respectively
denotes the Fourier transforms of y[n], s[n] and b[n].
Then the spectral subtraction can be expressed by:

|Ŝ(f)|b = |Y (f)|b − α|B(f)|b (7)

where |Ŝ(f)| denotes the estimate of |S(f)| and |B(f)|b is
a measure of the time-averaged noise spectra. Exponent
b is set to 1 for magnitude spectral subtraction and 2
for power spectral subtraction. α is the over-subtraction
factor and controls the amount of noise subtracted from
the noisy signal. To prevent negative estimate, the spec-
tral subtraction magnitude output is further processed

as:

|Ŝ(f)| =
½ |Ŝ(f)| , for |Ŝ(f)| > β|Y (f)|

β|Y (f)| , else
(8)

where the parameter β determines the remaining noise
floor. The phase spectrum of the de noised snoring signal
is approximated [5] to be the same as the phase spectrum
of the noisy snoring signal φy(f). The spectrum of the
de noised snoring signal can then be obtained from:

Ŝ(f) = |Ŝ(f)|ejφy(f) (9)

D. The Detection of Pitch

The noise suppressed observation ỹ[n] is used to es-
timate the pitch associated with snoring, based on a
modified version of the well known cepstrum-based pitch
detector (Fig. 3). First we computed the envelope
a[n] of ỹ[n], and windowed a[n] with w[n] to obtain
aw[n] = a[n]w[n]. Then the complex cepstrum âw[k]
of aw[n] was computed according to,

âw[k] = F
−1{log(F (aw[n]))}, (10)

where F and F−1 respectively denote the discrete Fourier
Transform and its inverse. The periodicity in ỹ[n] will
appear as a peak in âw[k], with the location of the peak
corresponding to the period.

Envelope
detector F

log( . )F

][ ny ][na

][nw

][na w

][ˆ ka
-1

Fig. 3. The modified ceptrum-based pitch detector

IV. Results

In Fig.4(a) we show a 3-second episode of a typical
snoring data recorded from a patient. Sound playback
of the record confirmed that the background noise pro-
foundly deteriorated the quality of the recording. We
used the SS techniques with b = 1, a = 1 and b = 0.05,
to obtain the noise suppressed data shown in Fig.4(b).
Playback indicated that the SS technique had success-
fully suppressed the background noise. In general, im-
provement of SNR in the range of 6 − 8dB could be
achieved, where the SNR is defined as a segmental SNR
[4], as used in the context of traditional speech analysis.
Fig.4(c) and 4(d) illustrate the importance of noise

reduction in pitch detection. In both frames 4(c) and
4(d), S(n) represents shorter data traces (about 60 ms
duration, approx.) extracted from the traces shown in
Fig4(a) and 4(b) respectively. In Fig. 4 (c), the raw data
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Fig. 4. The importance of background noise suppression.

together with its envelope a[n] and the cepstra â[n] are
shown. In Fig.4(d), similar figures for noise-suppressed
data are shown. Only the de-noised signal shows the
periodicity clearly, as also evidenced by the well defined
cepstral peak around 30ms. Comparing Figs.4(c) with
4(d), we conclude that noise suppression has an impor-
tant role in the snore analysis regime. The importance
of noise removal takes added significance, if the snore
testing is to be done in a home setting, away from the
carefully controlled environment of the hospital sleep lab-
oratory.

In pitch analysis of speech, the length of the data win-
dow w[n] is taken around 40ms. In snoring analysis, how-
ever, this is generally insufficient, because not enough
repetitive structures (TAR waves) fall within 40ms for
the periodicity to be well detected. Thus, all the results
reported in this paper uses a Hamming Window of length
80ms, which proved to be of sufficient length.

σσσσ (ms)

BS

AS

Speech

T 
(m

s)

Fig. 5. The pitch-jitter graph for snoring and speech. Symbols
‘*’, ‘+’, and ‘o’ denote classes AS, BS and Speech respectively.

All the 14 patients in the database were systematically

evaluated according to the following procedure:
Step 1: Remove the noise from y[n] using the SS tech-
nique to obtain ỹ[n].
Step 2: Define a sliding Hamming Window w[n] of
length 80ms, with an overlap factor 50%. Using the cep-
stral technique, estimate the periods Ti for each segment
i, i = 1, 2, . . . 30 of a given snoring/speech episode j as
the Hamming window slides over.
Step 3: Calculate the mean T (j) and the standard de-
viation σ(j) for the snoring episode j, based on the
30-estimations Ti, i = 1, 2, . . . , 30. Form the pair
(σ(j), T (j)) for episode j.
Step 4: Calculate (σ(j), T (j)) for all episodes of snor-
ing/speech data belonging to a given class AS, BS or
Speech.
In Fig.5, pairs of data (σ(j), T (j)) are plotted on a

[σ, T ]-plane (‘pitch-jitter’ graph), where symbols ‘*’, ‘+’,
and ‘o’ respectively denote classes AS, BS and Speech
respectively. According to Fig. 5, the snoring signals can
be successfully separated into AS and BS classes using
the feature [T,σ], based on a linear decision boundary
T = 1.85σ + 10.0. This boundary separates the given
data into AS class with 92.31% accuracy and BS with
90.7% accuracy. The separation of Speech from the rest
of the data was 100% successful.

V. CONCLUSION

We developed a mathematical model for snoring,in the
form of a linear convolution between pseudo-periodic ex-
citation sequence and a quantity (TAR) representing the
acoustic-mechanical properties of the upper-airway. We
proposed the use of pseudo-periodicity as a signature for
OSA. Snoring can easily be discriminated from human
speech based on the proposed signature. Furthermore,
the pseudo-periodicity itself provides a promising feature
to diagnose OSA. Noise reduction schemes are important
to obtain good results in snore analysis.
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